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Abstract

We present here a new method for calculating L* (L-star), the magnetic drift invariant. L* is 
used extensively in modeling radiation belt dynamics and many other space weather 
applications. L* is proportional to the integral of the magnetic flux through a surface whose 
boundary is the path of a charged particle moving through the Earth's geomagnetic
field. The equations of motion that describe very energetic particles in Earth's radiation belts are 
most commonly expressed in terms of L*, energy (momentum), and pitch angle (the angle 
between the particles motion and the magnetic field lines). The use of L* helps simplify the
equations of motion. However, a typical L* calculation can require on the order of 105 calls to a 
magnetic field model. To simplify these calculations, we have developed and tested a neural 
network surrogate model to calculate L* values with low induced error and computational
speeds millions of times faster than direct numerical integration. We used the Tsyganenko 2004 
magnetic field model for our calculations. This is the most recent of a series of models published
by Tsyganenko and colleagues. To train and validate our model, we used a collection of solar 
wind data amassed over the past four and a half decades. We refer to this numerical application 
for calculating L* as the Los Alamos National Laboratory L* model (LANL*). 



Introduction

The motion of charged particles in a realistic, complicated geomagnetic field can be 
closely modeled using “guiding center” theory. This theory represents the motion of the particle 
as a function of three adiabatic invariants - µ, K, and L*. The first two invariants are relatively 
simple to compute because they involve single integrals along a single field line. The invariants 
µ and K are measures of gyro and bounce motion, respectively. The gyro invariant, µ,  measures 
the particle's motion around a magnetic field line and is on the order of milliseconds. The bounce 
invariant, K, is a measure of the particle's motion parallel to the magnetic field lines  and has a 
time scale on the order of seconds. The latter, L*, is much more complicated to compute because 
its integral is multidimensional and it spans the entire 3D space. A typical L* computation 
involves on the order of 105 calls to the magnetic field model. Being computationally intensive, 
researchers often resort to using simpler magnetic field models to speed up computations at the 
expense of reduced accuracy. In this project, we implemented a neural network based surrogate 
model that accurately reproduces the same results as a direct numerical integration for 
calculating L*. We call this application of surrogate models the Los Alamos National Laboratory 
L* model, or LANL* for short.

Background

The equations of motion that describe highly energetic particles in the Earth’s radiation 
belts are typically expressed by diffusion in three dimensions – L*, energy, and pitch angle (the 
angle between the velocity vector and the magnetic field vector). Expressing motion in these 
coordinates greatly simplifies the problem by referencing particle distribution functions to values 
in the magnetic “drift shell” disregarding time or longitude. While utilizing L* greatly simplifies 
the equations of motion, it is also useful in other practical applications such as space weather 
forecasting. The problem with using L*, as we have already described, is that it is 
computationally expensive. The amount of time used in directly computing L* values can be 
more of a drawback to researchers than the inaccuracies of simpler magnetic field models. 

L* is defined as:

Here, k0 is the Earth’s dipole moment, RE is the radius of the Earth, and 

m 

Φ  is defined as:

Φ = ∫B⋅d S

In a dipole magnetic field, L* is the distance from the center of the Earth to the equatorial point 
of the magnetic field line in question, in units of Earth radii. Computing L* in a dipole field 
would be relatively simple, but wouldn’t give an accurate depiction of the Earth’s magnetic field. 
The Earth’s magnetic field is constantly being reshaped by the solar wind and magnetospheric 
and ionospheric current systems. These factors create such significant distortions in the Earth’s 
magnetic field that it can no longer be approximated by a magnetic dipole, and therefore require 

02
*

E

k
L

R






much more complex models that require more time to analyze and perform calculations. It is for 
this reason that researchers are seeking alternatives to calculating L*. In our project, we develop 
one such model utilizing a neural network based surrogate model. 

Method

Surrogate models can replace complicated, non-linear input-output relationships while 
introducing virtually insignificant error. They consist of multiple input nodes (one for each 
parameter), hidden nodes, and an output node (Figure 1). These nodes are similar to neurons in 
our bodies. Our surrogate model was trained using input-output data from a training set 
computed by the standard numerical integration technique. Surrogate models do not consider the 
details of the calculation. Instead, they focus on the input-output relationship. Results from 
surrogate models are not exact, but can be made to have an arbitrarily small inaccuracy 
depending on the number of training samples and hidden nodes. Barron’s (1991, 1993, 1994) 
study showed that error decreases proportional to 1/

m 

N  and 1/M, where N is the number of 
training samples and M is the number of hidden nodes. However, with too many hidden nodes, 
the network may simply memorize patterns, which can lead to inaccurate results.

For our model, we used a feedforward neural network. Artificial neural networks closely 
approximate the method of our nervous systems by representing a non-linear mapping of input-
output signals (Bishop, 1995; Reed and Marks, 1999). The hidden nodes are interconnected with 
the input nodes and the output node. Feedforward neural networks do not allow signals from 
output to cycle back to input. This results in faster processing time. Each node has weighted 
connections. During training, the weights are adjusted in order to produce the desired results. 
Using this method, we have developed a surrogate model for computing L* values with a typical 
error of less than 1%. Our neural network can calculate L* in a fraction of the time it takes for 
direct drift shell integration. Half a million calculations can be performed in seconds – a great 
improvement over the 1700+ hours it would take with direct methods.

We validated our network by comparing its results to those obtained by the standard 
numerical integration method. Figure 2 shows the L* values computed with the standard method 
of integration compared to those obtained with the neural network. Notice the relatively small 
error as compared to the L* values. Figure 3 presents the size of the error in histogram form to 
give a better visual picture of the small error induced when using the neural network method. For 
the training data, we used data obtained from various LANL geosynchronous satellites. We 
calculated their L* values in hourly increments and compared to our network’s values.

Conclusion and Summary

L* is a valuable variable in that it helps to simplify the equations of motion for particles 
in geomagnetic fields. The drawback to using L* is that is time consuming to compute. Using a 
neural network based surrogate model, we have developed a method for computing L* values 
orders of magnitude faster than the standard integration methods. This method will be very 
valuable to researchers working in space physics as L* useful in forecasting space weather. By 
using a feedforward network, it is possible to greatly decrease computing time without 
introducing more than 1% error.



Figures

Figure 1. Schematic diagram of a neural network. The input values enter through the input nodes 
on the left, pass through the hidden layer, and finally emerge from the output layer giving the 

value of L*. The connectors (represented by lines) are weighted during training as to produce the 
desired results with minimal error.

Figure 2. Neural network L* values compared to standard integration method. The x-axis holds 
the values obtained through direct integration and the y-axis holds the values obtained with the 

neural network. Note the relatively small error of ΔL* ~ 0.06 compared to the L* values ranging 
between 6 and 11. This give an error of less than one percent.



Figure 3. Error in L*. The x-axis holds the error in L* and the y-axis holds the number of 
occurrences for each magnitude of error. Again, note the relatively small error compared to the 

L* values.
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